首页> 外文OA文献 >Handling missing data in multivariate time series using a vector autoregressive model-imputation (VAR-IM) algorithm
【2h】

Handling missing data in multivariate time series using a vector autoregressive model-imputation (VAR-IM) algorithm

机译:使用向量自回归模型 - 插补(VaR-Im)算法处理多变量时间序列中的缺失数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Imputing missing data from a multivariate time series dataset remains a challenging problem. There is an abundance of research on using various techniques to impute missing, biased, or corrupted values to a dataset. While a great amount of work has been done in this field, most imputing methodologies are centered about a specific application, typically involving static data analysis and simple time series modelling. However, these approaches fall short of desired goals when the data originates from a multivariate time series. The objective of this paper is to introduce a new algorithm for handling missing data from multivariate time series datasets. This new approach is based on a vector autoregressive (VAR) model by combining an expectation and minimization (EM) algorithm with the prediction error minimization (PEM) method. The new algorithm is called a vector autoregressive imputation method (VAR-IM). A description of the algorithm is presented and a case study was accomplished using the VAR-IM. The case study was applied to a real-world data set involving electrocardiogram (ECG) data. The VAR-IM method was compared with both traditional methods list wise deletion and linear regression substitution; and modern methods Multivariate Auto-Regressive State-Space (MARSS) and expectation maximization algorithm (EM). Generally, the VAR-IM method achieved significant improvement of the imputation tasks as compared with the other two methods. Although an improvement, a summary of the limitations and restrictions when using VAR-IM is presented.
机译:从多元时间序列数据集中估算缺失数据仍然是一个难题。关于使用各种技术将缺失,有偏或损坏值插值到数据集的研究很多。尽管在该领域已完成了大量工作,但大多数估算方法都以特定应用为中心,通常涉及静态数据分析和简单的时间序列建模。但是,当数据源自多元时间序列时,这些方法就无法达到预期目标。本文的目的是介绍一种用于处理多元时间序列数据集中的缺失数据的新算法。这种新方法基于矢量自回归(VAR)模型,将期望最小化(EM)算法与预测误差最小化(PEM)方法结合在一起。新算法称为向量自回归插补方法(VAR-IM)。介绍了该算法的说明,并使用VAR-IM完成了案例研究。该案例研究被应用于涉及心电图(ECG)数据的真实数据集。将VAR-IM方法与传统方法列表明智删除和线性回归替换进行了比较;和现代方法多元自回归状态空间(MARSS)和期望最大化算法(EM)。通常,与其他两种方法相比,VAR-IM方法可以显着改善插补任务。尽管有所改进,但总结了使用VAR-IM时的局限性和局限性。

著录项

  • 作者

    Bashir, F.; Wei, H.-L.;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号